Packaging for Horticultural Products

Courtesy: S. K. Sarkar, Regional Head, INDIAN INSTITUTE OF PACKAGING, Kolkata Horticultural Products are Perishable and Consumed in **Great Volume**

- Extremely Large loss due to above fact
- Horticulture products different in character from one piece to another
- Amount of Gas released after harvesting varies widely
- Sensitivity to Gas released by themselves also differ from one to another

Factors affecting the Freshness

Temperature
Humidity
Gas Atmosphere
Volatiles adsorption

Temperature

- Degree of influence varies from one to another
- Quality deteriorates with increase in Temperature

 Minimizing temperature rise in packages is a very important element for preservation of Quality of packaged Horticulture produce

Humidity

- Moisture Content of most products are 90% or more
- Loss of 5%MC will result extreme loss of commodity value
- Water Evaporation mechanism differs from one to another
- Amount & rate of water evaporation differs in different environments
- 5%MC loss is the maximum limit that can be tolerated in terms of commodity value
- Methods to keep MC within limit:
- Store in humid environment
- 2. Keep in Polvethylene film

Gas Atmosphere

- Influence of Oxygen
- Normal respiration: Even when O₂ concentration in the environment falls fairy
- Irregular respiration:Leeds to Physiological disturbance-resulting in corruption, when O₂ concentration is below the "Threshold Valued" it is related to the CO₂ concentration. Threshold value varies from one to another
- Low O₂ concentration but above "Threshold Valued" extends the storable period because of Respiration Suppressing Effects
- Adequate packaging with Inert gas substitution- effective preservation of freshness can be expected
- Correct selection of film is important & it should be adequately combined with freshness preservation agent to ensure adequate balance of O₂,CO₂, N₂

Influence of Carbonic Acid Gas:

- High Carbonic Acid gas concentrationsuppress Respiration- favourable effect on Storage
- Abnormality to metabolic physiology including respiration when the concentration reaches threshold level
- Threshold level varies from one to another
- Threshold level for Tomato 6-9%
- Detailed values for each have not been established yet

Influence of Ethylene Gas:

- Air mixed with Ethylene promotes Colouring
- It is believed 0.1ppm Ethylene in atmosphere causes ageing and colour change
- Removal of Ethylene will extend storage period

Storage of Perishable

C A Storage

- Depressurized Storage
- Storage in Film package
- Freshness preserving agentscavenger (iron oxide & calcium hydroxide), Ethylene Absorber

Developments in Plastics

- PE LD, HD, HM-HD, LLD & Blends
- PP TQPP, CPP, OPP, Metallised & Clear
- PS HIPS, EPS
- PVC, PVDC, PVAc
- Polyester Metallised & Clear
- Nylon, EVOH
- EAA

Corrugated Fibre Board & Paper

CFB Boxes	2	771		
Test of CFB Boxes		7063		
Kraft Paper	1	1397		
Kraft Liner	9588			
Test of Paper	1060/4006			
Wrapping Paper	6615	Tissue	8460	
Waxed Paper	3962			

Thank you for your time and attention !

For further details please contact:

S.K.Sarkar, Deputy Director

Indian Institute of Packaging

Block CP, Sec. V, Salt lake, Kolkata 700 091

E-mail: iipcal@cal.vsnl.net.in

Tel 2367 6016 / 0763 / 9561

Fax: +91-33-2367 9561

Website : URL-http://WWW.iip-in.com

Developments in the field of Packaging

- Metal can continuous annealing, double cold reduction, beading, DRD, DWI,electrolytically coated, differentially coated,TFS, welded can,easy open ends
- Glass light weight & PE coated
- Canning to aseptic system to irradiation
- Metal & Glass to Plastic
- HACCP, ISO 9000, ISO 14000

WHY TEST ?

- 1. To predict Performance in practice
- 2. To Control Quality
- To obtain information to Modify, Improve or Reduce the cost of the Package

Definitions of Packaging

- Packaging may be defined as the means of ensuring the safe delivery of a product to the ultimate consumer in sound condition, at the minimum <u>overall</u> cost. Packaging materials must be Environmental friendly.
- Packaging must protect what it sales, and sell what it protects.

Criteria for Packaging

- Appearance
- Identification
- Instruction for use
- Information about contents in order to satisfy legal requirements
- Carry the Brand name
- Sales aid

Protection

Chemical

- Product/Packaging material COMPATIBILIRTY
- Ingress of liquid & vapour
- Loss of liquid or vapour
- micro-organisms (BIOLOGICAL)

Physical

- Compression
- Impact
- Puncturing / vibration
- Effect of Temperature & Light
- Pilferage (BIOLOGICAL)

Function

- Machine Performance
- End use Performance
- Display
- Ease of Opening / Closing
- Dispensing
- Disposability
- Recycling

Packaging - a very vital & dominant role in modern world

- Urbanization, double-income nuclear families, improved living standard & higher disposable income
- Concern for health, requiring prevention of adulteration and providing hygienic products
- Movement of goods within and across countries from place of production to place of utilization
- Elimination of waste through preservation of perishable goods
- in short, packaging provides for Protection, Preservation and Promotion

To predict Performance in Practice FOUR co-relations are Needed

- Between the "TESTS" carried out in the laboratory
 & the behaviour of the 'PACKAGE' in Practice.
 - * Field Performance of the Package & Laboratory Transport Simulation Tests.
 - * Laboratory Transport Simulation Test on Filled Package & Test on The Empty Container & on any Fittings or Components.
- Between the Strength & Other properties of the various Materials used in making the container

& the tests on the Empty Container.

 Properties of the Packaging Materials & its Manufacturing Variables.

To Control Quality

- * Must be Relatively Simple
- * Must also be capable of being carried out Rapidly
- * Preferably they should give a Numerical results

Eco safe Packaging ENVIRONMENTAL ISSUES

Packaging - a cause of Environmental ProblemMunicipal Solid West (MSW)20.8 %Gaseous Emissions*2.0 %Water Consumption1.5 %Energy Consumption3.7 %*Phosgene, Carbon monoxide, Sulphur dioxide,
Nitrogen dioxide, Chlorine & Dioxin etc.Source OCED

REGULATIONS / LEGISLATIONS

- New regulations / legislations have been introduced by countries like Germany, Netherlands, Denmark, France & many others.
- New legislations give more emphasis on INTRODUCING ECO-FRIENDLY / ECO-LABELLED Packages.
- Eco-friendly materials are generally defined as materials which do not pollute the Atmosphere. This is still a DEBATABLE ISSUE.
- The legislation yet does not list materials which CAN / CAN NOT be used.

GERMAN ORDINANCE ON PACKAGING WEST

- It is the liability of the exporter to bring back all Packaging materials from Germany - not Practical.
- German buyer to take responsibility to dispose Packaging materials in a suitable manner.
- Exporters can directly take Green Dot License, so that the organisations is responsible for collecting / segregating / sending for Recycling of Packaging materials.
- Fee is levied, depending on the type of Packaging material.

Eco-friendliness characteristics

Packaging material which will make no harm or less harm to the Environment.

* Environment - Compatible.

Bio-degradability may be considered but not essential.

HOW TO MAKE PACKAGE MORE ECO-FRIENDLY ?

- **1. AVOIDANCE**
- 2. REDUCTION
- 3. REUSABILITY
- 4. RECYCLABILITY
 - a. Selection
 - b. Segregation
 - c. Processing

ASTM D 5033-90 "STANDERED GUIDE FOR THE DEVELOPMENT OF STANDERDS RELATING TO THE PROPER USE OF RECYCLED PLASTICS

- IS: 2828 "GLOSSARY OF TERMS USED IN PLASTIC INDUSTRY"
- **DOC:PCD 12(1170) GUIDELINES FOR RECYLING OF PLASTIC**
- **5.** INCINERATION with possibility of ENERGY RECOVERY
- 6. LAND FILL

Environmental Management System (EMS) ISO 14000

- Separate ISO designations assigned to each disciplines: 14001 to 14025 for various stages of consideration or adoption.
- Elements within 14001
- 1. Environmental Commitment Policy
- 2. Planning
- 3. Implementation
 - a) Resources
 - b) Training
 - c) Communication
 - d) Record keeping
- **4.** Measurement & Evaluation
- 5. Review & Improvement

Transport Packages

Evaluation

Criteria for Packaging

- Packaging should arrive destination in an attractive condition
- Product will just call for unpacking and installation to be commissioned for usage
- There will be no need for replacement of damage parts
- There will be no mishap or malfunctioning of the equipment
- There will be no spillage of the contents leading to a loss or contamination of the Environment

Developments

Mono layer, Multi layer, Coextrusion, Coating & Lamination.

Developments in the field of Engineering Products

- Skin / Blister Packaging
- Shrink Packaging
- Stretch wrapping
- VPI / VCI
- Use of Desiccant
- EPS / Plastic foam
- Corrugated Fibre Board

Relevant Indian Standards

Wooden Packagin	g		
Specification of Timber	6662		
Packing Case	1503		
Crates	3071		
Terminology	6703	Code	10106
Containers guidelines	10687		
Performance Test	8358		
Preservation 497	73,218,6341,6	5791,10	013,4833
Specification of Ply-woo	d 303,	Test	1734

Packaging of HAZARDOUS/DANGEROUS Materials

- All materials fall into two categories: Hazardous/Dangerous or General / Non-hazardous.
- Dangerous goods are articles which are capable of posing a significant risk to health, safety or to property when transported.
- Transportation of Dangerous goods need to comply the recommendation of United Nation Committee of Experts for the same.
- The International Maritime Dangerous Goods Code (IMDG Code) for the safety of life at Sea.
- UN tested and certified packages are mandatory for all international transport of dangerous goods. UN has standardized the test methods and levels of performance for all transport package.

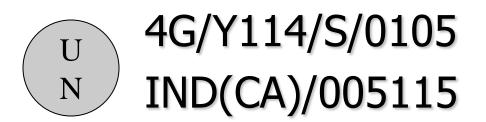
Classification of Dangerous Goods

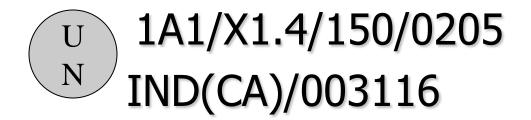
- Class 1
- Class 2
- Class 3
- Class 4
- Class 5
- Class 6
- Class 7
- Class 8
- Class 9

- **Explosives**
- Gases
 - Flammable Liquids
 - Flammable Solids
 - Oxidizing Substances / Organic Peroxides
 - **Toxic and Infectious Substances**
 - **Radioactive Materials**
 - Corrosives
 - Miscellaneous

Packaging Type Code

- 1 Drum
- 2 Wooden barrel
- 3 Jerrican
- 4 Box
- 5 Bag
- 6 Composite packaging


Packaging Material Code


- A Steel
- B Alluminium
- C Natural wood
- D Plywood
- F Reconstituted wood
- G Fibreboard
- H Plastic material
- L Textile

Packing Group

- Packing Group I(X) High danger
- Packing Group II(Y) Medium danger
- Packing Group III(Z) Low danger

Complete Code

